
Kapow! Documentation
Release 0.7.1-27-g76af097

BBVA Innovation Labs

May 23, 2023

Contents

1 The Project 1
1.1 Quick Start Guide . 1

1.1.1 Scenario . 1
1.1.2 Limitations and Constraints . 2
1.1.3 The Desired Solution . 2
1.1.4 Using Kapow! . 3

1.2 Security Concerns Working with Parameters . 5
1.2.1 Parameter Injection Attacks . 5
1.2.2 Parameter Mangling Attacks . 5

1.3 Installing Kapow! . 6
1.3.1 Download and Install a Binary . 6
1.3.2 Install the package with go get . 7
1.3.3 Include Kapow! in your Container Image . 7

2 Kapow! Tutorial 9
2.1 Your First Day at Work . 9
2.2 Let’s Backup that Database! . 10
2.3 What have we done? . 12
2.4 We need to filter . 13
2.5 I Need my Report! . 14
2.6 Sharing the Stats . 18
2.7 Securing the server . 21

3 Examples 23
3.1 Working with Init Scripts . 23

3.1.1 Starting Kapow! using an init script . 23
3.1.2 Writing Multiline Routes . 23
3.1.3 Keeping Things Tidy . 24
3.1.4 Debugging Init Programs/Scripts . 24

3.2 Managing Routes . 25
3.2.1 Adding New Routes . 25
3.2.2 Listing Routes . 25
3.2.3 Deleting Routes . 26

3.3 Handling HTTP Requests . 26
3.3.1 Add or Modify an HTTP Header . 26
3.3.2 Upload Files . 27
3.3.3 Sending HTTP error codes . 28

i

3.3.4 How to redirect using HTTP . 28
3.3.5 Manage Cookies . 29

3.4 Using JSON . 29
3.4.1 Modify JSON by Using Shell Commands . 29

3.5 Shell Tricks . 31
3.5.1 How to Execute Two Processes in Parallel . 31
3.5.2 Script debugging . 31

3.6 Using HTTPS and mTLS with Kapow! . 31
3.6.1 Using Kapow! built in capabilities . 31
3.6.2 Kapow! Behind a Reverse Proxy . 32

4 Concepts 35
4.1 Kapow! HTTP Interfaces . 35

4.1.1 HTTP User Interface . 35
4.1.2 HTTPS Control Interface . 35
4.1.3 HTTP Data Interface . 35

4.2 Philosophy . 36
4.2.1 Single Static Binary . 36
4.2.2 Shell Agnostic . 36
4.2.3 Not a Silver Bullet . 36
4.2.4 Interoperability over Performance . 36

4.3 Request Life Cycle . 36
4.3.1 1. request . 37
4.3.2 2. spawn . 37
4.3.3 3. kapow set /response/body banana . 37
4.3.4 4. exit . 37
4.3.5 5. response . 37

4.4 The Kapow! Resource Tree . 37
4.4.1 Overview . 37
4.4.2 Resources . 38

4.5 Route Matching . 45
4.6 Routes . 45

4.6.1 Elements . 46
4.6.2 Matching Algorithm . 47

Index 49

ii

CHAPTER 1

The Project

This section will introduce you to Kapow! basics.

1.1 Quick Start Guide

We’ll explain a simple example to help you understand what Kapow! can do and why it is so awesome :-).

1.1.1 Scenario

In this example we’ll consider that our scenario is a corporate network like this:

Our organization has an external host that acts as a bridge between our intranet an the public Internet.

Goal

Our team must be able to check if the Internal Host is alive on an ongoing basis.

1

Kapow! Documentation, Release 0.7.1-27-g76af097

1.1.2 Limitations and Constraints

1. We don’t want to grant access to the External Host to anybody.

2. We don’t want to manage VPNs or any similar solutions to access Internal Host from the Internet.

3. We want to limit the actions that a user can perform in our intranet while it is checking if Internal Host is alive.

4. We want to use the most standard mechanism. Easy to use and automate.

5. We don’t have a budget to invest in a custom solution.

1.1.3 The Desired Solution

After analyzing the problem and with our goal in mind, we conclude that it is enough to use a simple ping to Internal
Host.

So, the next step is to analyze how to perform the ping.

Accessing via SSH to External Host

If we choose this option, then, for every person that needs to check the status of Internal Host we need to create a
user in the External Host and grant them ssh access.

Verdict

This is not a good idea, because:

1. We’d need to manage users (violates a constraint).

2. We’d need to grant users access to a host (violates a constraint).

3. We would not be able to control what options the user could provide to ping (violates a constraint).

Develop and Deploy a Custom Solution

OK, this approach could be the best choice for our organization, but:

1. We’d need to start a new project, develop, test, manage and maintain it.

2. We’d need to wait for for the development to be production ready.

3. We’d need a budget. Even if we have developers in our organization, their time it’s not free.

Verdict

This is not a good idea, because:

1. We’d need to spend money (violates a constraint).

2. We’d need to spend time (and time is money, see reason #1).

2 Chapter 1. The Project

Kapow! Documentation, Release 0.7.1-27-g76af097

Using Kapow! (spoiler: it’s the winner!)

OK, let’s analyze Kapow! and check if it is compatible with our constraints:

1. Kapow! is Open Source, so it’s also free as in beer.

2. By using Kapow! we don’t need to code our own solution, so we don’t have to waste time.

3. By using Kapow! we can run any command in the External Host, limiting the command parameters, so it’s
safe.

4. By using Kapow! we can launch any system command as an HTTP API easily, so we don’t need to grant
login access to External Host to anybody.

Verdict

Kapow! is the best choice, because it satisfies all of our requirements.

1.1.4 Using Kapow!

In order to get our example scenario working we need to follow the steps below.

Install Kapow!

Follow the installation instructions.

Write an Init Program ping-route

Kapow! uses init programs/scripts where the endpoints you want to expose are defined.

For each endpoint, you can decide which commands get executed.

For our example we need a file like this:

$ chmod +x ping-route
$ cat ping-route
#!/usr/bin/env sh
kapow route add /ping -c 'ping -c 1 10.10.10.100 | kapow set /response/body'

Let’s dissect this beast piece by piece:

1. #!/usr/bin/env sh - shebang line so that the kernel knows which interpreter to use

2. kapow route add /ping - adds a new HTTP API endpoint at /ping path in the Kapow! server. You
have to use the GET method to invoke the endpoint.

3. -c - after this parameter, we write the system command that Kapow! will run each time the endpoint is invoked.

4. ping -c 1 10.10.10.100 - sends one ICMP ping packet to the Internal Host.

5. | kapow set /response/body - writes the output of ping to the body of the response, so you can see
it.

1.1. Quick Start Guide 3

Kapow! Documentation, Release 0.7.1-27-g76af097

Launch the Service

At this point, we only need to launch kapow with our ping-route:

$ kapow server ping-route

Kapow! can expose the user interface through HTTPS, to do this provide the corresponding key and certificates chain
paths at startup:

$ kapow server --keyfile path/to/keyfile --certfile path/to/certfile ping-route

Consume the Service

Now we can call our newly created endpoint by using our favorite HTTP client. In this example we’re using curl:

$ curl http://external.host/ping
PING 10.10.100 (10.10.100): 56 data bytes
64 bytes from 10.10.100: icmp_seq=0 ttl=55 time=1.425 ms

et voilà !, if you’re using HTTPS don’t forget to provide the CA certificate if needed:

$ curl --cacert path/to/CAfile https://external.host/ping
PING 10.10.100 (10.10.100): 56 data bytes
64 bytes from 10.10.100: icmp_seq=0 ttl=55 time=1.425 ms

Under the Hood

To understand what’s happening under the hood with Kapow! let’s see the following diagram:

As you can see, Kapow! provides the necessary mojo to turn a system command into an HTTP API.

4 Chapter 1. The Project

Kapow! Documentation, Release 0.7.1-27-g76af097

1.2 Security Concerns Working with Parameters

Special care has to be taken when using parameters provided by the user when composing command line invocations.

Sanitizing user input is not a new problem, but in the case of Kapow!, we have to take into account also the way that
the shell parses its arguments, as well as the way the command itself interprets them, in order to get it right.

Warning: It is imperative that the user input is sanitized properly if we are going feed it as a parameter to a
command line program.

1.2.1 Parameter Injection Attacks

When you resolve variable values be careful to tokenize correctly by using double quotes. Otherwise you could be
vulnerable to parameter injection attacks.

This example is VULNERABLE to parameter injection

In this example, an attacker can inject arbitrary parameters to ls.

1 $ cat command-injection
2 #!/usr/bin/env sh
3 kapow route add '/vulnerable/{value}' - <<-'EOF'
4 ls $(kapow get /request/matches/value) | kapow set /response/body
5 EOF

Exploiting using curl:

1 $ curl http://localhost:8080/vulnerable/-lai%20hello

This example is NOT VULNERABLE to parameter injection

Note how we add double quotes when we recover value data from the request:

1 $ cat command-injection
2 #!/usr/bin/env sh
3 kapow route add '/not-vulnerable/{value}' - <<-'EOF'
4 ls -- "$(kapow get /request/matches/value)" | kapow set /response/body
5 EOF

Warning: Quotes around parameters only protect against the injection of additional arguments, but not against
turning a non-option into option or vice-versa. Note that for many commands we can leverage double-dash to
signal the end of the options. See the “Security Concern” section on the docs.

1.2.2 Parameter Mangling Attacks

In order to understand what we mean by parameter mangling let’s consider the following route:

#!/bin/sh
kapow route add /find -c <<-'EOF'

BASEPATH=$(kapow get /request/params/path)
find "$BASEPATH" | kapow set /response/body

EOF

1.2. Security Concerns Working with Parameters 5

Kapow! Documentation, Release 0.7.1-27-g76af097

The expected use for this endpoint is something like this:

$ curl http://kapow-host/find?path=/tmp
/tmp
/tmp/.X0-lock
/tmp/.Test-unix
/tmp/.font-unix
/tmp/.XIM-unix
/tmp/.ICE-unix
/tmp/.X11-unix
/tmp/.X11-unix/X0

Let’s suppose that a malicious attacker gets access to this service and makes this request:

$ curl http://kapow-host/find?path=-delete

Let’s see what happens:

The command that will eventually be executed by bash is:

find -delete | kapow set /response/body

This will silently delete all the files below the current directory, no questions asked. Probably not what you expected.

This happens because find has the last word on how to interpret its arguments. For find, the argument -delete
is not a path.

Let’s see how we can handle this particular case:

#!/bin/sh
kapow route add /find -c <<-'EOF'

USERINPUT=$(kapow get /request/params/path)
BASEPATH=$(dirname -- "$USERINPUT")/$(basename -- "$USERINPUT")
find "$BASEPATH" | kapow set /response/body

EOF

Note: Since this is critical for keeping your Kapow! services secure, we are working on a way to make this more
transparent and safe, while at the same time keeping it Kapowy.

1.3 Installing Kapow!

Kapow! has a reference implementation in Go that is under active development right now. If you want to start using
Kapow! you can choose from several options.

1.3.1 Download and Install a Binary

Binaries for several platforms are available from the releases section, visit the latest release page and download the
binary corresponding to the platfom and architecture you want to install Kapow! in.

GNU/Linux

Install the downloaded binary using the following command as a privileged user.

6 Chapter 1. The Project

https://github.com/BBVA/kapow/releases

Kapow! Documentation, Release 0.7.1-27-g76af097

install kapow_0.7.1_linux_amd64 /usr/local/bin/kapow

macOS

Install the downloaded binary using the following command as a privileged user.

install kapow_0.7.1_darwin_amd64 /usr/local/bin/kapow

Windows®

Native windows installers are provided for both 32 and 64 bit versions.

Alternatively, you can download the provided zipfile, expand it, and move kapow.exe to a directory of your choice;
then update the system PATH variable to include that directory. Note that the zipfile also includes the LICENSE.

1.3.2 Install the package with go get

If you already have installed and configured the go runtime in the host where you want to run Kapow!, simply run:

$ go get -v github.com/BBVA/kapow

Note that Kapow! leverages Go modules, so you can target specific releases:

$ GO111MODULE=on go get -v github.com/BBVA/kapow@v0.7.1
go: finding github.com v0.7.1
go: finding github.com/BBVA v0.7.1
go: finding github.com/BBVA/kapow v0.7.1
go: downloading github.com/BBVA/kapow v0.7.1
go: extracting github.com/BBVA/kapow v0.7.1
github.com/google/shlex
github.com/google/uuid
github.com/spf13/pflag
github.com/BBVA/kapow/internal/server/httperror
github.com/BBVA/kapow/internal/http
github.com/BBVA/kapow/internal/server/model
github.com/BBVA/kapow/internal/client
github.com/gorilla/mux
github.com/BBVA/kapow/internal/server/user/spawn
github.com/BBVA/kapow/internal/server/data
github.com/BBVA/kapow/internal/server/user/mux
github.com/BBVA/kapow/internal/server/user
github.com/BBVA/kapow/internal/server/control
github.com/spf13/cobra
github.com/BBVA/kapow/internal/server
github.com/BBVA/kapow/internal/cmd
github.com/BBVA/kapow

1.3.3 Include Kapow! in your Container Image

If you want to include Kapow! in a Docker image, you can add the binary directly from the releases section. Below
is an example Dockerfile that includes Kapow!.

1.3. Installing Kapow! 7

https://golang.org/cmd/go/
https://blog.golang.org/using-go-modules

Kapow! Documentation, Release 0.7.1-27-g76af097

FROM debian:stable-slim

ADD https://github.com/BBVA/kapow/releases/download/v0.7.1/kapow_0.7.1_linux_
→˓amd64 /usr/bin/kapow

RUN chmod 755 /usr/bin/kapow

ENTRYPOINT ["/usr/bin/kapow"]

If the container is intended for running the server and you want to dinamically configure it, remember to include a
--control-bind param with an external bind address (e.g., 0.0.0.0) and to map all the needed ports in order
to get access to the control interface.

After building the image you can run the container with:

$ docker run --rm -i -p 8080:8080 -v $(pwd)/whatever-route:/opt/whatever-route
→˓kapow:latest server /opt/whatever-route

With the -v parameter we map a local file into the container’s filesystem so we can use it to configure our Kapow!
server on startup.

8 Chapter 1. The Project

CHAPTER 2

Kapow! Tutorial

This tutorial will help you get more familiar with Kapow!.

It tells you the story of a junior ops person landing a new job in a small company. Teaming up with an
experienced senior, they’ll face many challenges of increasing difficulty. With Kapow! at their side, they
will be able to pass all the hurdles.

You just need to follow the steps and execute the code shown in the tutorial to learn the Kapow! way.

Enjoy the ride!

2.1 Your First Day at Work

Senior

Welcome to ACME Inc. This is your first day here, right?

Junior

Hi! Yes! And I am eager to start working. What will be my first task?

Senior

First, let me help you get acquainted with our infrastructure.

Junior

OK.

Senior

We have two Linux boxes that provide services to our employees.

1. The Corporate Server: Provides email, database and web services.

2. The Backup Server: It is used to store backup of the important company data.

Junior

9

Kapow! Documentation, Release 0.7.1-27-g76af097

That’s it? OK, just like Google, then.

Senior

Smartass. . .

Junior

(chuckles nervously).

Senior

Well, I think is time for you to start with your first task. It just so happens that we received another request
to backup the database from the projects team.

2.2 Let’s Backup that Database!

Junior

A Backup? Don’t you have this kind of things already automated?

Senior

Well, is not that simple. We of course have periodic backups. But, our project team ask us for a backup
every time a project is finished.

I’ve already prepared a script to do the task. Before executing it in production, why don’t you download
it and test it in your laptop?

$ curl --output backup_db.sh https://raw.githubusercontent.com/BBVA/kapow/
→˓master/docs/source/tutorial/materials/backup_db.sh
$ chmod u+x backup_db.sh

Junior

(after a few minutes)

OK, done! I just run it and I got this output:

$./backup_db.sh
Backup done!
Your log file is at /tmp/backup_db.log

Senior

That’s right. That script performed the backup and stored it into the Backup Server and appended some
information into the backup log file at /tmp/backup_db.log.

Now you can ssh into the Corporate Server and make the real backup.

Junior

Wait, wait. . . how long have you been doing this?

Senior

This procedure was already here when I arrived.

Junior

And why don’t they do it themselves? I mean, what do you contribute to the process?

Senior

10 Chapter 2. Kapow! Tutorial

Kapow! Documentation, Release 0.7.1-27-g76af097

I am the only one allowed to ssh into the Corporate Server, for obvious reasons.

Junior

Why do you need to ssh in the first place? Couldn’t it be done without ssh?

Senior

Actually, it could be done with a promising new tool I’ve just found. . . Kapow!

Is a tool that allows you to publish scripts as HTTP services. If we use it here we can give them the ability
to do the backup whenever they want.

Junior

Sounds like less work for me. I like it!

Senior

OK then, let’s it try on your laptop first.

First of all, you have to follow the installation instructions.

Junior

I’ve just installed it in my laptop, but I don’t understand how all of this is going to work.

Senior

Don’t worry, it is pretty easy. Basically we will provide an HTTP endpoint managed by Kapow! at the
Corporate Server; when the project team wants to perform a backup they only need to call the endpoint
and Kapow! will call the backup script.

Junior

It seems pretty easy. How can I create the endpoint?

Senior

First you have to start a fresh server. Please run this in your laptop:

$ kapow server

Warning: It is important that you run this command in the same directory in which you downloaded
backup_db.sh.

Junior

Done! But it doesn’t seem to do anything. . .

Senior

Now you have the port 8080 open, but no endpoints have been defined yet. To define our endpoint you
have to run this in another terminal:

$ kapow route add -X PUT /db/backup -e ./backup_db.sh

This will create an endpoint accessible via http://localhost:8080/db/backup. This endpoint
has to be invoked with the PUT method to prevent accidental calls.

Junior

Cool! Do we need to do all this stuff every time we start the Corporate Server?

Senior

2.2. Let’s Backup that Database! 11

Kapow! Documentation, Release 0.7.1-27-g76af097

Not at all. The creators of Kapow! have thought of everything. You can put all your route definitions on
init programs, which can be shell scripts, and pass them to the server on startup.

It should look something like:

$ cat backup-route
#!/usr/bin/env sh
kapow route add -X PUT /db/backup -e ./backup_db.sh

And then you can start Kapow! with it:

$ kapow server backup-route

Junior

Great! Now it says:

$ kapow server backup-route
2019/11/26 11:40:01 Running init program: "backup-route"
{"id":"19bb4ac7-1039-11ea-aa00-106530610c4d","method":"PUT","url_pattern":"/
→˓db/backup","entrypoint":"./backup_db.sh","command":"","index":0}
2019/11/26 11:40:01 Done running init program: "backup-route"

I understand that this is proof that we have the endpoint available.

Senior

That appears to be the case, but we better check it.

Call it with curl:

$ curl -X PUT http://localhost:8080/db/backup

Junior

Yay! I can see the log file at /tmp/backup_db.log

Senior

That’s great. I am going to install all this in the Corporate Server and forget about the old procedure.

That enough for your first day! Go home now and get some rest.

2.3 What have we done?

Senior

Hey, I come from seeing our project team mates. They’re delighted with their new toy, but they miss
something.

I forgot to tell you that after the backup is run they need to review the log file to check that everything
went OK.

Junior

Makes sense. Do you think that Kapow! can help with this? I have the feeling that this is the right way to
go about it. . .

Senior

Sure! Let’s take a look at the documentation to see how we can tweak the logic of the request.

12 Chapter 2. Kapow! Tutorial

Kapow! Documentation, Release 0.7.1-27-g76af097

Junior

Got it! There’re a lot of resources to work with. I see that we can write to the response. Do you think this
will work for us?

Senior

Yeah, the team is used to cat the log file contents to see what happened in the last execution:

$ cat /tmp/backup_db.log

I’ve made it easy for you. Are you up to it?

Junior

Let me try add this to our init program:

#!/usr/bin/env sh
kapow route add /db/backup_logs -c 'cat /tmp/backup_db.log | kapow set /
→˓response/body'

Senior

Looks good to me, clean and simple, and it is a very good idea to use GET here as it won’t change anything
in the server. Let’s restart Kapow! and try it.

Junior

Wooow! I get back the content of the file. If they liked the first one they’re going to loooove this.

Senior

Agreed. And with this, I think we are done for the day. . .

2.4 We need to filter

Senior

Hiya! How’re you doing this morning? I’ve got a new challenge from our grateful mates.

As time goes on from the last log rotation, the size of the log file gets bigger and bigger. Furthermore,
they want to limit the output of the file to pick only some records, and only from the end of the file. We
need to do something to help them as they are wasting a lot of time reviewing the output.

Junior

I have a feeling that this is going to entail some serious bash-foo. What do you think?

Senior

Sure! But in addition to some good shell plumbing we’re going to squeeze Kapow!’s superpowers a litle
bit more to get a really good solution.

Can you take a look at Kapow!’s documentation to see if something can be done?

Junior

I’ve read in the documentation that there is a way to get access to the data coming in the request. Do you
think we can use this to let them choose how to do the filtering?

Senior

2.4. We need to filter 13

Kapow! Documentation, Release 0.7.1-27-g76af097

Sounds great! How have we lived without Kapow! all this time?

As they requested, we can offer them a parameter to filter the registers they want to pick, and another
parameter to limit the output size in lines.

Junior

Sounds about right. Now we have to make some modifications to our last endpoint definition to add this
new feature. Let’s get cracking!

Senior

Well, we got it again, this is exactly what they need:

kapow route add /db/backup_logs -c 'grep -- "$(kapow get /request/params/
→˓filter)" /tmp/backup_db.log \
| tail -n "$(kapow get /request/params/lines)" \
| kapow set /response/body'

It looks a bit weird, but we’ll have time to revise the style later. Please make some tests on your laptop
before we publish it on the Corporate Server. Remember to send them an example URL with the
parameters they can use to filter and limit the amount of lines they get.

Junior

OK, should look like this, doesn’t it?

$ curl 'http://localhost:8080/db/backup_logs?filter=rows%20inserted&lines=200
→˓'

Senior

Exactly. Another great day helping the company advance. Let’s go grab a beer to celebrate!

2.5 I Need my Report!

Junior

Good morning!

You look very busy, what’s going on?

Senior

I am finishing the capacity planning report. Let me just mail it. . . Done!

Today I am going to teach you how to write this report so we can split the workload.

Junior

Oh. That sounds. . . fun. OK, tell me about this report.

Senior

Here at ACME Inc. we take capacity planning seriously. It is important that our employees always have
the best resources to accomplish their job.

We prepare a report with some statistics about the load of our servers. This way we know when we have
to buy another one.

Junior

I see this company scales up just like Google. . .

14 Chapter 2. Kapow! Tutorial

Kapow! Documentation, Release 0.7.1-27-g76af097

Senior

Smartass. . .

Junior

(chuckles)

Senior

We have a procedure:

1. ssh into the machine.

2. Execute the following commands copying its output for later filling in the report:

• hostname and date: To include in the report.

• free -m: To know if we have to buy more RAM.

• uptime: To see the load of the system.

• df -h: Just in case we need another hard disk drive.

3. Copy all this in an email and send it to Susan, the operations manager.

Junior

And why can’t Susan ssh into the server herself to see all of this?

Senior

She doesn’t have time for this. She is a manager, and she is very busy!

Junior

Well, I guess we can make a Kapow! endpoint to let her see all this information from the browser. This
way she doesn’t need to waste any time asking us.

I started to write it already:

kapow route add /capacityreport -c 'hostname | kapow set /response/body;
→˓date | kapow set /response/body; free -m | kapow set /response/body;
→˓uptime | kapow set /response/body; df -h | kapow set /response/body'

Senior

Not good enough!

First of all, that code is not readable. And the output would be something like:

corporate-server
Tue 26 Nov 2019 01:03:44 PM CET

total used free shared buff/cache
→˓available
Mem: 31967 2286 23473 729 6207
→˓28505
Swap: 0 0 0
13:03:44 up 5:57, 1 user, load average: 0.76, 0.63, 0.45
Filesystem Size Used Avail Use% Mounted on
dev 16G 0 16G 0% /dev
run 16G 1.7M 16G 1% /run

Which is also very difficult to read!

What Susan is used to see is more like this:

2.5. I Need my Report! 15

Kapow! Documentation, Release 0.7.1-27-g76af097

Hostname:
... the output of `hostname` ...
==
Date:
... the output of `date` ...
==
Memory:
... the output of `free -m` ...
==
... and so on ...

Junior

All right, what about this?

kapow route add /capacityreport -c 'hostname | kapow set /response/body;
→˓echo
→˓==
→˓| kapow set /response/body; ...'

Senior

That fixes the issue for Susan, but makes it worse for us.

What about a HEREDOC to help us make the code more readable?

Junior

A HEREwhat?

Senior

A HEREDOC or here document is the method Unix shells use to express multi-line literals.

They look like this:

$ cat <<-'EOF'
you can put
more than one line
here

EOF

The shell will put the data between the first EOF and the second EOF as the stdin of the cat process.

Junior

OK, I understand. That’s cool, by the way.

So, if I want to use this with Kapow!, I have to make it read the script from stdin. To do this I know
that I have to put a - at the end.

Let me try:

kapow route add /capacityreport - <<-'EOF'
hostname | kapow set /response/body
echo

→˓==
→˓| kapow set /response/body

date | kapow set /response/body
echo

→˓==
→˓| kapow set /response/body

(continues on next page)

16 Chapter 2. Kapow! Tutorial

Kapow! Documentation, Release 0.7.1-27-g76af097

(continued from previous page)

free -m | kapow set /response/body
echo

→˓==
→˓| kapow set /response/body

uptime | kapow set /response/body
echo

→˓==
→˓| kapow set /response/body

df -h | kapow set /response/body
echo

→˓==
→˓| kapow set /response/body
EOF

Senior

That would work. Nevertheless I am not yet satisfied.

What about all the repeated kapow set /response/body statements? Do you think we could do
any better?

Junior

Maybe we can redirect all output to a file and use the file as the input of kapow set /response/
body.

Senior

There is a better way. You can make use of another neat bash feature: command grouping.

Command grouping allows you to execute several commands treating the group as one single command.

You can use this way:

{ command1; command2; } | command3

Junior

What about this:

kapow route add /capacityreport - <<-'EOF'
{

hostname
echo

→˓==
date
echo

→˓==
free -m
echo

→˓==
uptime
echo

→˓==
df -h
echo

→˓==
} | kapow set /response/body

EOF

2.5. I Need my Report! 17

https://www.gnu.org/software/bash/manual/html_node/Command-Grouping.html

Kapow! Documentation, Release 0.7.1-27-g76af097

Senior

Nice! Now I am not worried about maintaining that script. Good job!

Junior

You know me. Whatever it takes to avoid writing reports ;-)

(both chuckle).

2.6 Sharing the Stats

Junior

Good morning!

Senior

Just about time. . . We are in trouble!

The report stuff was a complete success, so much so that now Susan has hired a frontend developer to
create a custom dashboard to see the stats in real time.

Now we have to provide the backend for the solution.

Junior

And what’s the problem?

Senior

We are not developers! What are we doing writing a backend?

Junior

Just chill out. Can’t be that difficult. . . What do they need, exactly?

Senior

We have to provide a new endpoint to serve the same data but in JSON format.

Junior

So, we have half of the work done already!

What about this?

kapow route add /capacitystats - <<-'EOF'
echo "{\"memory\": \"`free -m`\"}" | kapow set /response/body

EOF

Senior

For starters, that’s not valid JSON. The output would be something like:

$ echo "{\"memory\": \"`free -m`\"}"
{"memory": " total used free shared buff/
→˓cache available
Mem: 31967 3121 21680 980 7166
→˓27418
Swap: 0 0 0"}

You can’t add new lines inside a JSON string that way, you have to escape the new line characters as \n.

18 Chapter 2. Kapow! Tutorial

Kapow! Documentation, Release 0.7.1-27-g76af097

Junior

Are you sure?

Senior

See for yourself.

$ echo "{\"memory\": \"`free -m`\"}" | jq
parse error: Invalid string: control characters from U+0000 through U+001F
→˓must be escaped at line 3, column 44

Junior

jq? What is that command?

Senior

jq is a wonderful tool for working with JSON data from the command line. With jq you can extract data
from a JSON document and it also allows you to generate a well-formed JSON document.

Junior

Let’s use it, then!

How can we generate a JSON document with jq?

Senior

To generate a document we use the -n option:

$ jq -n '{"mykey": "myvalue"}'
{
"mykey": "myvalue"

}

Junior

That does not seem very useful. The output is just the same.

Senior

Bear with me, it gets better. You can add variables to the JSON and jq will escape them for you.

$ jq -n --arg myvar "$(echo -n myvalue)" '{"mykey": $myvar}'
{
"mykey": "myvalue"

}

Junior

Sweet! That’s just what I need.

(hacks away for a few minutes).

What do you think of this?

$ jq -n --arg host "$(hostname)" --arg date "$(date)" --arg memory "$(free -
→˓m)" --arg load "$(uptime)" --arg disk "$(df -h)" '{"hostname": $host, "date
→˓": $date, "memory": $memory, "load": $load, "disk": $disk}'
{
"hostname": "junior-host",
"date": "Tue 26 Nov 2019 05:27:24 PM CET",
"memory": " total used free shared buff/

→˓cache available\nMem: 31967 3114 21744 913
→˓ 7109 27492\nSwap: 0 0 0",

(continues on next page)

2.6. Sharing the Stats 19

Kapow! Documentation, Release 0.7.1-27-g76af097

(continued from previous page)

"load": " 17:27:24 up 10:21, 1 user, load average: 0.20, 0.26, 0.27",
"disk": "Filesystem Size Used Avail Use% Mounted on\ndev

→˓ 16G 0 16G 0% /dev"
}

Senior

That is the output we have to produce, right. But the code is far from readable. And you also forgot about
adding the endpoint.

Can we do any better?

Junior

That’s easy:

kapow route add /capacitystats - <<-'EOF'
jq -n \

--arg hostname "$(hostname)" \
--arg date "$(date)" \
--arg memory "$(free -m)" \
--arg load "$(uptime)" \
--arg disk "$(df -h)" \
'{"hostname": $hostname, "date": $date, "memory": $memory, "load

→˓": $load, "disk": $disk}' \
| kapow set /response/body

EOF

What do you think?

Senior

I’m afraid you forgot an important detail.

Junior

I don’t think so! the JSON is well-formed and it contains all the required data. And the code is quite
readable.

Senior

You are right, but you are not using HTTP correctly. You have to set the Content-Type header to let
your client know the format of the data you are outputting.

Junior

Oh, I see. Let me try again:

kapow route add /capacitystats - <<-'EOF'
jq -n \

--arg hostname "$(hostname)" \
--arg date "$(date)" \
--arg memory "$(free -m)" \
--arg load "$(uptime)" \
--arg disk "$(df -h)" \
'{"hostname": $hostname, "date": $date, "memory": $memory, "load

→˓": $load, "disk": $disk}' \
| kapow set /response/body
echo application/json | kapow set /response/headers/Content-Type

EOF

20 Chapter 2. Kapow! Tutorial

Kapow! Documentation, Release 0.7.1-27-g76af097

Senior

Better. Just a couple of details.

1. You have to set the headers before writing to the body. This is because the body can be so big that
Kapow! is forced to start sending it out.

2. In cases where you want to set a small piece of data (like the header), it is better not to use stdin.
Kapow! provides a secondary syntax for these cases:

$ kapow set <resource> <value>

Junior

Something like this?

kapow route add /capacitystats - <<-'EOF'
kapow set /response/headers/Content-Type application/json
jq -n \

--arg hostname "$(hostname)" \
--arg date "$(date)" \
--arg memory "$(free -m)" \
--arg load "$(uptime)" \
--arg disk "$(df -h)" \
'{"hostname": $hostname, "date": $date, "memory": $memory, "load

→˓": $load, "disk": $disk}' \
| kapow set /response/body

EOF

Senior

That’s perfect! Now, let’s upload this to the Corporate Server and tell the frontend developer about it.

2.7 Securing the server

Senior

Hi. . . I hope you rested last night!

Come on, I need your help here!

Junior

Good morning! What’s the matter? Sounds worrying

Senior

We forgot to take the most basic security measures when deploying our services. Every body at the
company can access the services and the information is transferred in clear text.

Junior

Oh! Damn, you’re right! You think we can do anything to solve this mess?

Senior

Yes, I’m pretty sure that those smart guys have thought on that when building Kapow! Have a look at the
documentation.

Junior

2.7. Securing the server 21

Kapow! Documentation, Release 0.7.1-27-g76af097

Got it! They did it, here’re the instictions to start a server with HTTPS support.

It’s amazing! It says we can even use mTLS to control access, really promising.

Senior

Ok, ok. . . First thigs first. We need to get a server certificate to start working with HTTPS. Fortunately
we can ask for one to the CA we use for the other servers. Let’s pick up one for development, they’re
quick to get.

Junior

Yeah! I’ll change the startup script to configure HTTPS:

$ kapow server --keyfile /etc/kapow/tls/keyfile \
--certfile /etc/kapow/tls/certfile \
/etc/kapow/awesome-route

It’s easy, please copy the private key file and certificate chain to /etc/kapow/tls and we can restart.

Senior

Great! it’s working, communications are secured. Let’s say everybody to change from http to https.

Junior

Ok, did it. What are the steps to follow to limit access by using mTLS?

Senior

Besides configuring the server we need to provide the users with their own client certificates and private
keys so they can configure their browsers and the application server.

Junior

Yes, please give me the CA certificate that will issue our client certificates and I’ll change the startup
script again

$ kapow server --keyfile /etc/kapow/tls/keyfile \
--certfile /etc/kapow/tls/certfile \
--clientauth true \
--clientcafile /etc/kapow/tls/clientCAfile \
/etc/kapow/awesome-route

Done!

Senior

Ok, let’s communicate the changes to all the affected teams before we restart

Junior

Oh God, After all we’re starting to look like Google

(chuckles)

22 Chapter 2. Kapow! Tutorial

CHAPTER 3

Examples

3.1 Working with Init Scripts

3.1.1 Starting Kapow! using an init script

An init program, which can be just a shell script, allows you to make calls to the kapow route command.

1 $ kapow server example-init-program

With the example-init-program:

1 $ cat example-init-program
2 #!/usr/bin/env sh
3 #
4 # This is a simple example of an init program
5 #
6 echo '[*] Starting my init program'
7

8 # We add 2 Kapow! routes
9 kapow route add /my/route -c 'echo hello world | kapow set /response/body'

10 kapow route add -X POST /echo -c 'kapow get /request/body | kapow set /response/body'

Note: Kapow! can be fully configured using just init scripts

3.1.2 Writing Multiline Routes

If you need to write more complex actions, you can leverage multiline routes:

1 $ cat multiline-route
2 #!/usr/bin/env sh

(continues on next page)

23

Kapow! Documentation, Release 0.7.1-27-g76af097

(continued from previous page)

3 kapow route add /log_and_stuff - <<-'EOF'
4 echo this is a quite long sentence and other stuff | tee log.txt | kapow set /

→˓response/body
5 cat log.txt | kapow set /response/body
6 EOF

Warning: Be aware of the “-” at the end of the kapow route add command. It tells kapow route add
to read commands from stdin.

Warning: If you want to learn more about multiline usage, see: Here Doc

3.1.3 Keeping Things Tidy

Sometimes things grow, and keeping things tidy is the only way to mantain the whole thing.

You can distribute your endpoints in several init programs. And you can keep the whole thing documented in one html
file, served with Kapow!.

1 $ cat index-route
2 #!/usr/bin/env sh
3 kapow route add / - <<-'EOF'
4 cat howto.html | kapow set /response/body
5 EOF
6

7 source ./info_stuff
8 source ./other_endpoints

You can import other shell script libraries with source.

3.1.4 Debugging Init Programs/Scripts

Since Kapow! redirects the standard output and the standard error of the init program given on server startup to its
own, you can leverage set -x to see the commands that are being executed, and use that for debugging.

To support debugging user request executions, the server subcommand has a --debug option flag that prompts
Kapow! to redirect both the script’s standard output and standard error to Kapow!’s standard output, so you can
leverage set -x the same way as with init programs.

$ cat withdebug-route
#!/usr/bin/env sh
kapow route add / - <<-'EOF'

set -x
echo "This will be seen in the log"
echo "Hi HTTP" | kapow set /response/body

EOF

$ kapow server --debug withdebug-route

24 Chapter 3. Examples

https://en.wikipedia.org/wiki/Here_document

Kapow! Documentation, Release 0.7.1-27-g76af097

3.2 Managing Routes

3.2.1 Adding New Routes

Warning: Be aware that if you register more than one route with exactly the same path, only the first route added
will be used.

GET route

Defining a route:

1 $ kapow route add /my/route -c 'echo hello world | kapow set /response/body'

Calling route:

1 $ curl http://localhost:8080/my/route
2 hello world

POST route

Defining a route:

1 $ kapow route add -X POST /echo -c 'kapow get /request/body | kapow set /response/body
→˓'

Calling a route:

1 $ curl -d 'hello world' -X POST http://localhost:8080/echo
2 hello world

Capturing Parts of the URL

Defining a route:

1 $ kapow route add '/echo/{message}' -c 'kapow get /request/matches/message | kapow
→˓set /response/body'

Calling a route:

1 $ curl http://localhost:8080/echo/hello%20world
2 hello world

3.2.2 Listing Routes

You can list the active routes in the Kapow! server.

1 $ kapow route list
2 [{"id":"20c98328-0b82-11ea-90a8-784f434dfbe2","method":"GET","url_pattern":"/echo/

→˓{message}","entrypoint":"/bin/sh -c","command":"kapow get /request/matches/message
→˓| kapow set /response/body"}]

3.2. Managing Routes 25

Kapow! Documentation, Release 0.7.1-27-g76af097

Or, if you want human-readable output, you can use jq:

1 $ kapow route list | jq
2 [
3 {
4 "id": "20c98328-0b82-11ea-90a8-784f434dfbe2",
5 "method": "GET",
6 "url_pattern": "/echo/{message}",
7 "entrypoint": "/bin/sh -c",
8 "command": "kapow get /request/matches/message | kapow set /response/body",
9 }

10]

Note: Kapow! has a HTTPS Control Interface, bound by default to localhost:8081.

3.2.3 Deleting Routes

You need the ID of a route to delete it. Running the command used in the listing routes example, you can obtain the
ID of the route, and then delete it by typing:

1 $ kapow route remove 20c98328-0b82-11ea-90a8-784f434dfbe2

3.3 Handling HTTP Requests

3.3.1 Add or Modify an HTTP Header

You may want to add some extra HTTP header to the response.

In this example we’ll be adding the header X-Content-Type-Options to the response.

1 $ cat sniff-route
2 #!/usr/bin/env sh
3 kapow route add /sec-hello-world - <<-'EOF'
4 kapow set /response/headers/X-Content-Type-Options nosniff
5 kapow set /response/headers/Content-Type text/plain
6

7 echo this will be interpreted as plain text | kapow set /response/body
8 EOF
9

10 $ kapow server nosniff-route

Testing with curl:

1 $ curl -v http://localhost:8080/sec-hello-world
2 * Trying ::1...
3 * TCP_NODELAY set
4 * Connected to localhost (::1) port 8080 (#0)
5 > GET /sec-hello-word HTTP/1.1
6 > Host: localhost:8080
7 > User-Agent: curl/7.54.0
8 > Accept: */*
9 >

(continues on next page)

26 Chapter 3. Examples

Kapow! Documentation, Release 0.7.1-27-g76af097

(continued from previous page)

10 < HTTP/1.1 200 OK
11 < X-Content-Type-Options: nosniff
12 < Date: Wed, 20 Nov 2019 10:56:46 GMT
13 < Content-Length: 24
14 < Content-Type: text/plain
15 <
16 this will be interpreted as plain text

Warning: Please be aware that if you don’t explicitly specify the value of the Content-Type header, Kapow!
will guess it, effectively negating the effect of the X-Content-Type-Options header.

Note: You can read more about the X-Content-Type-Options: nosniff header here.

3.3.2 Upload Files

Example #1

Uploading a file using Kapow! is very simple:

1 $ cat upload-route
2 #!/usr/bin/env sh
3 kapow route add -X POST /upload-file - <<-'EOF'
4 kapow get /request/files/data/content | kapow set /response/body
5 EOF

1 $ cat results.json
2 {"hello": "world"}
3 $ curl -X POST -H 'Content-Type: multipart/form-data' -F data=@results.json

→˓http://localhost:8080/upload-file
4 {"hello": "world"}

Example #2

In this example we reply the line count of the file received in the request:

1 $ cat count-file-lines
2 #!/usr/bin/env sh
3 kapow route add -X POST /count-file-lines - <<-'EOF'
4

5 # Get sent file
6 FNAME=$(kapow get /request/files/myfile/filename)
7

8 # Counting file lines
9 LCOUNT=$(kapow get /request/files/myfile/content | wc -l)

10

11 kapow set /response/status 200
12

13 echo "$FNAME has $LCOUNT lines" | kapow set /response/body
14 EOF

3.3. Handling HTTP Requests 27

https://developer.mozilla.org/es/docs/Web/HTTP/Headers/X-Content-Type-Options

Kapow! Documentation, Release 0.7.1-27-g76af097

1 $ cat file.txt
2 hello
3 World
4 $ curl -F myfile=@file.txt http://localhost:8080/count-file-lines
5 file.txt has 2 lines

3.3.3 Sending HTTP error codes

You can specify custom status code for HTTP response:

1 $ cat error-route
2 #!/usr/bin/env sh
3 kapow route add /error - <<-'EOF'
4 kapow set /response/status 401
5 echo -n '401 error' | kapow set /response/body
6 EOF

Testing with curl:

1 $ curl -v http://localhost:8080/error
2 * Trying ::1...
3 * TCP_NODELAY set
4 * Connected to localhost (::1) port 8080 (#0)
5 > GET /error HTTP/1.1
6 > Host: localhost:8080
7 > User-Agent: curl/7.54.0
8 > Accept: */*
9 >

10 < HTTP/1.1 401 Unauthorized
11 < Date: Wed, 20 Nov 2019 14:06:44 GMT
12 < Content-Length: 10
13 < Content-Type: text/plain; charset=utf-8
14 <
15 401 error

3.3.4 How to redirect using HTTP

In this example we’ll redirect our users to Google:

1 $ cat redirect
2 #!/usr/bin/env sh
3 kapow route add /redirect - <<-'EOF'
4 kapow set /response/headers/Location https://google.com
5 kapow set /response/status 301
6 EOF

1 $ curl -v http://localhost:8080/redirect
2 * Trying ::1...
3 * TCP_NODELAY set
4 * Connected to localhost (::1) port 8080 (#0)
5 > GET /redirect HTTP/1.1
6 > Host: localhost:8080
7 > User-Agent: curl/7.54.0

(continues on next page)

28 Chapter 3. Examples

Kapow! Documentation, Release 0.7.1-27-g76af097

(continued from previous page)

8 > Accept: */*
9 >

10 < HTTP/1.1 301 Moved Permanently
11 < Location: http://google.com
12 < Date: Wed, 20 Nov 2019 11:39:24 GMT
13 < Content-Length: 0
14 <
15 * Connection #0 to host localhost left intact

3.3.5 Manage Cookies

If you track down some user state, Kapow! allows you manage Request/Response Cookies.

In the next example we’ll set a cookie:

1 $ cat cookie
2 #!/usr/bin/env sh
3 kapow route add /setcookie - <<-'EOF'
4 CURRENT_STATUS=$(kapow get /request/cookies/kapow-status)
5

6 if [-z "$CURRENT_STATUS"]; then
7 kapow set /response/cookies/Kapow-Status 'Kapow Cookie Set'
8 fi
9

10 echo -n OK | kapow set /response/body
11 EOF

Calling with curl:

1 $ curl -v http://localhost:8080/setcookie
2 * Trying ::1...
3 * TCP_NODELAY set
4 * Connected to localhost (::1) port 8080 (#0)
5 > GET /setcookie HTTP/1.1
6 > Host: localhost:8080
7 > User-Agent: curl/7.54.0
8 > Accept: */*
9 >

10 < HTTP/1.1 200 OK
11 < Set-Cookie: Kapow-Status="Kapow Cookie Set"
12 < Date: Fri, 22 Nov 2019 10:44:42 GMT
13 < Content-Length: 3
14 < Content-Type: text/plain; charset=utf-8
15 <
16 OK
17 * Connection #0 to host localhost left intact

3.4 Using JSON

3.4.1 Modify JSON by Using Shell Commands

3.4. Using JSON 29

Kapow! Documentation, Release 0.7.1-27-g76af097

Note: Nowadays Web services are JSON-based, so making your script JSON aware is probably a good choice. In
order to be able to extract data from a JSON document as well as composing JSON documents from a script, you can
leverage jq.

Example #1

In this example our Kapow! service will receive a JSON value with an incorrect date, then our init program will fix it
and return the correct value to the user.

1 $ cat fix_date
2 #!/usr/bin/env sh
3 kapow route add -X POST /fix-date - <<-'EOF'
4 kapow set /response/headers/Content-Type application/json
5 kapow get /request/body | jq --arg newdate "$(date +'%Y-%m-%d_%H-%M-%S')" '.

→˓incorrectDate=$newdate' | kapow set /response/body
6 EOF

Call the service with curl:

1 $ curl -X POST http://localhost:8080/fix-date -H 'Content-Type: application/json' -d '
→˓{"incorrectDate": "no way, Jose"}'

2 {
3 "incorrectDate": "2019-11-22_10-42-06"
4 }

Example #2

In this example we extract the name field from the incoming JSON document in order to generate a two-attribute
JSON response.

$ cat echo-attribute
#!/usr/bin/env sh
kapow route add -X POST /echo-attribute - <<-'EOF'

JSON_WHO=$(kapow get /request/body | jq -r .name)

kapow set /response/headers/Content-Type application/json
kapow set /response/status 200

jq --arg greet Hello --arg value "${JSON_WHO:-World}" --null-input '{ greet:
→˓$greet, to: $value }' | kapow set /response/body
EOF

Call the service with curl:

1 $ curl -X POST http://localhost:8080/echo-attribute -H 'Content-Type: application/json
→˓' -d '{"name": "MyName"}'

2 {
3 "greet": "Hello",
4 "to": "MyName"
5 }

30 Chapter 3. Examples

https://stedolan.github.io/jq/

Kapow! Documentation, Release 0.7.1-27-g76af097

3.5 Shell Tricks

3.5.1 How to Execute Two Processes in Parallel

We want to ping two machines parallel. Kapow! can get IP addresses from query params:

1 $ cat parallel-route
2 #!/usr/bin/env sh
3 kapow route add '/parallel/{ip1}/{ip2}' - <<-'EOF'
4 ping -c 1 -- "$(kapow get /request/matches/ip1)" | kapow set /response/body &
5 ping -c 1 -- "$(kapow get /request/matches/ip2)" | kapow set /response/body &
6 wait
7 EOF

Calling with curl:

1 $ curl -v http://localhost:8080/parallel/10.0.0.1/10.10.10.1

3.5.2 Script debugging

Bash provides the set -x builtin command that “After expanding each simple command, for command, case com-
mand, select command, or arithmetic for command, display the expanded value of PS4, followed by the command and
its expanded arguments or associated word list”. This feature can be used to help debugging the init programs and,
together the --debug option in the server sub-command, the scripts executed in user requests.

3.6 Using HTTPS and mTLS with Kapow!

Kapow! can be accesed over HTTPS and use mutual TLS for authentication. Right now there are two possibilities to
configure HTTPS/mTLS on a running server.

Note: In the following sections we refer to the host running the Kapow! server as kapow:8080.

For testing purposes you can generate a self-signed certificate with the following command:

$ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes

3.6.1 Using Kapow! built in capabilities

In this section we present the option flags that the Kapow! server command provides in order to set up a server with
HTTPS and/or mTLS.

Enabling HTTPS

When starting the server we can provide the private key and the certificate chain presented to the clients by giving to
the server the paths to the corresponding files using the --keyfile and --certfile option flags in the command
line:

3.5. Shell Tricks 31

Kapow! Documentation, Release 0.7.1-27-g76af097

$ kapow server --keyfile path/to/keyfile --certfile path/to/certfile foobar-route

Now Kapow! is listening on its default port (8080) accepting requests over HTTPS. You can test it with the following
command:

$ curl --cacert path/to/CAfile https://localhost:8080/endpoint

Where path/to/CAfile is the path to the file containing the CA certificate that issued Kapow!’s certificate.

Enabling mTLS

Once we have Kapow! configured to use HTTPS we can, optionally, activate mTLS so we can reject client connections
that do not present a valid client certificate. Currently only issuer CA matching is supported, but in a near future we’ll
be able to filter by DN in order to get more fine grained authentication.

In order to activate mTLS we have to provide Kapow! server command with the CA certificate issuing the client
certificates we want to accept with the --clientcafile option flag and toggle the --clientauth=true option
flag:

$ kapow server --keyfile path/to/keyfile --certfile path/to/certfile --
→˓clientauth=true --clientcafile path/to/clientCAfile foobar-route

With this configuration Kapow! will reject connections that do not present a client certificate or one certificate not
issued by the specified CA. You can test it with the following command:

$ curl --cacert path/to/CAfile --cert path/to/clientcredentials https://
→˓localhost:8080/endpoint

Where path/to/clientcredentials is the path to the file in PKCS#12 format containing the client certificate
and private key. If you have the certificate and the private key in different files you can use the –key option to specify
it independently.

3.6.2 Kapow! Behind a Reverse Proxy

Although Kapow! supports HTTPS you can use a reverse proxy to serve a Kapow! service via HTTPS.

In this section we present a series of reverse proxy configurations that augment the capabilities of Kapow!.

Caddy

• Automatic Let’s Encrypt Certificate

Caddy automatically enables HTTPS using Let's Encrypt certificates given that some criteria are met.

yourpublicdomain.example
proxy / kapow:8080

• Automatic Self-signed Certificate

If you want Caddy to automatically generate a self-signed certificate for testing you can use the following
configuration.

yourdomain.example
proxy / kapow:8080
tls self_signed

32 Chapter 3. Examples

https://caddyserver.com/docs/automatic-https

Kapow! Documentation, Release 0.7.1-27-g76af097

• Custom Certificate

If you already have a valid certificate for your server use this configuration.

yourdomain.example
proxy / kapow:8080
tls /path/to/cert.pem /path/to/key.pem

In order to enable mutual TLS authentication read the Caddy documentation.

HAProxy

With the following configuration you can run HAProxy with a custom certificate.

frontend myserver.local
bind *:443 ssl crt /path/to/myserver.local.pem
mode http
default_backend nodes

backend nodes
mode http
server kapow1 kapow:8080

Note: You can produce myserver.local.pem from the certificates in previous examples with this command:

$ cat /path/to/cert.pem /path/to/key.pem > /path/to/myserver.local.pem

In order to enable mutual TLS authentication read the HAProxy documentation.

nginx

With the following configuration you can run nginx with a custom certificate.

server {
listen 443 ssl;
server_name myserver.local;
ssl_certificate /path/to/cert.pem;
ssl_certificate_key /path/to/key.pem;

location / {
proxy_pass http://kapow:8080;

}
}

In order to enable mutual TLS authentication read the `Nginx documentation`_.

3.6. Using HTTPS and mTLS with Kapow! 33

https://caddyserver.com/docs/caddyfile/directives/tls
https://www.haproxy.com/documentation/hapee/latest/security/authentication/client-certificate-authentication/

Kapow! Documentation, Release 0.7.1-27-g76af097

34 Chapter 3. Examples

CHAPTER 4

Concepts

This section is a contains a reference of all the important Kapow! concepts that you should know.

4.1 Kapow! HTTP Interfaces

kapow server sets up three HTTP server interfaces, each with a distinct and clear purpose.

4.1.1 HTTP User Interface

The HTTP User Interface is used to serve final user requests.

By default it binds to address 0.0.0.0 and port 8080, but that can be changed via the --bind flag.

4.1.2 HTTPS Control Interface

The HTTPS Control Interface is used by the command kapow route to administer the list of system
routes.

This interface uses mTLS by default (double-pinned autogenerated certs).

By default it binds to address 127.0.0.1 and port 8081, but that can be changed via the --control-bind flag.
If this is the case, consider also --control-reachable-addr which will configure the autogenerated certificate
to match that address.

4.1.3 HTTP Data Interface

The HTTP Data Interface is used by the commands kapow get and kapow set to exchange the data for a
particular request.

By default it binds to address 127.0.0.1 and port 8082, but that can be changed via the --data-bind flag.

35

Kapow! Documentation, Release 0.7.1-27-g76af097

4.2 Philosophy

4.2.1 Single Static Binary

• Deployment is then as simple as it gets.

• Docker-friendly.

4.2.2 Shell Agnostic

• Kapow!, like John Snow, knows nothing, and makes no assumptions about the shell you are using. It only
spawns executables.

• You are free to implement a client to the Data API directly if you are so inclined. The spec provides all the
necessary details.

4.2.3 Not a Silver Bullet

You should not use Kapow! if your project requires complex business logic.

If you try to encode business logic in a shell script, you will deeply regret it soon enough.

Kapow! is designed for automating simple stuff.

4.2.4 Interoperability over Performance

We want Kapow! to be as performant as possible, but not at the cost of flexibility. This is the reason why our Data
API leverages HTTP instead of a lighter protocol for example.

When we have to choose between making things faster or more interoperable the latter usually wins.

4.3 Request Life Cycle

This section describes the sequence of events happening for each request answered by the HTTP User Interface.

36 Chapter 4. Concepts

Kapow! Documentation, Release 0.7.1-27-g76af097

4.3.1 1. request

The user makes a request to the HTTP User Interface.

• The request is matched against the route table.

• kapow provides a HANDLER_ID to identify this request and don’t mix it with other requests that could be
running concurrently.

4.3.2 2. spawn

kapow spawns the executable specified as entrypoint in the matching route.

The default entrypoint is /bin/sh; let’s focus on this workflow.

The spawned entrypoint is run with the following variables added to its environment:

• KAPOW_HANDLER_ID: Containing the HANDLER_ID

• KAPOW_DATA_URL: With the URL of the HTTP Data Interface

• KAPOW_CONTROL_URL: With the URL of the HTTPS Control Interface

4.3.3 3. kapow set /response/body banana

During the lifetime of the shell, the request and response resources are available via these commands:

• kapow get /request/...

• kapow set /response/...

These commands use the aforementioned environment variables to read data from the user request and to write the
response. They accept data either as arguments or from stdin.

4.3.4 4. exit

The shell dies. Long live the shell!

4.3.5 5. response

kapow finalizes the original request. Enjoy your banana now.

4.4 The Kapow! Resource Tree

This is the model that Kapow! uses to expose the internals of the user request being serviced.

We use this tree to get access to any data that comes in the request, as well as to compose the response.

We access the resource tree easily with the kapow set and kapow get subcommands.

4.4.1 Overview

4.4. The Kapow! Resource Tree 37

Kapow! Documentation, Release 0.7.1-27-g76af097

/

request
method HTTP Method used (GET, POST)
host Host part of the URL
version HTTP version of the request
path Complete URL path (URL-unquoted)
remote IP address of client
matches

<name> Previously matched URL path parts
params

<name> URL parameters (after the "?" symbol)
headers

<name> HTTP request headers
cookies

<name> HTTP request cookie
form

<name> Value of the form field with name <name>
files

<name>
filename Original file name of the file uploaded in the form

→˓field <name>
content The contents of the file uploaded in the form field

→˓<name>
body HTTP request body

| ssl
client

i
dn Subject's DN common name coming ina request through

→˓SSL with mTLS
route

id Id of the route that matched this request.

| server
log Log to server stderr

<prefix> Optional prefix to the message

response
status HTTP status code
headers

<name> HTTP response headers
cookies

<name> HTTP request cookie
body Response body

4.4.2 Resources

/request/method Resource

The HTTP method of the incoming request.

Sample Usage

If the user runs:

38 Chapter 4. Concepts

Kapow! Documentation, Release 0.7.1-27-g76af097

$ curl -X POST http://kapow.example:8080

then, when handling the request:

$ kapow get /request/method
POST

/request/host Resource

The Host header as defined in the HTTP/1.1 spec of the incoming request.

Sample Usage

If the user runs:

$ curl http://kapow.example:8080

then, when handling the request:

$ kapow get /request/host
kapow.example

/request/version Resource

The HTTP version of the incoming request.

Sample Usage

If the user runs:

$ curl --http1.0 http://kapow.example:8080

then, when handling the request:

$ kapow get /request/version
HTTP/1.0

/request/path Resource

Contains the path substring of the URL.

Sample Usage

If the user runs:

$ curl http://kapow.example:8080/foo/bar?qux=1

then, when handling the request:

4.4. The Kapow! Resource Tree 39

Kapow! Documentation, Release 0.7.1-27-g76af097

$ kapow get /request/path
/foo/bar

/request/remote Resource

The IP address of the host making the incoming request.

Sample Usage

If the user runs:

$ curl http://kapow.example:8080

then, when handling the request:

$ kapow get /request/remote
192.168.100.156

/request/matches/<name> Resource

Contains the part of the URL captured by the pattern name.

Sample Usage

For a route defined like this:

$ kapow route add /foo/{mymatch}/bar

if the user runs:

$ curl http://kapow.example:8080/foo/1234/bar

then, when handling the request:

$ kapow get /request/matches/mymatch
1234

/request/params/<name> Resource

Contains the value of the URL parameter name

Note: In the reference implementation only the first parameter’s value can be accessed in the case of multiple values
coming in the request.

40 Chapter 4. Concepts

Kapow! Documentation, Release 0.7.1-27-g76af097

Sample Usage

If the user runs:

$ curl http://kapow.example:8080/foo?myparam=bar

then, when handling the request:

$ kapow get /request/params/myparam
bar

/request/headers/<name> Resource

Contains the value of the HTTP header name of the incoming request.

Note: In the reference implementation only the first header’s value can be accessed in the case of multiple values
coming in the request.

Sample Usage

If the user runs:

$ curl -H X-My-Header=Bar http://kapow.example:8080/

then, when handling the request:

$ kapow get /request/headers/X-My-Header
Bar

/request/cookies/<name> Resource

Contains the value of the HTTP cookie name of the incoming request.

Sample Usage

If the user runs:

$ curl --cookie MYCOOKIE=Bar http://kapow.example:8080/

then, when handling the request:

$ kapow get /request/cookies/MYCOOKIE
Bar

/request/form/<name> Resource

Contains the value of the field name of the incoming request.

4.4. The Kapow! Resource Tree 41

Kapow! Documentation, Release 0.7.1-27-g76af097

Note: In the reference implementation there are some caveats:

• Only the first form field’s value can be accessed in the case of multiple values coming in the request.

• In order to get access to the form data a correct ‘Content-Type’ header must be present in the request
(‘application/x-www-form-urlencoded’ or ‘multipart/form-data’)

Sample Usage

If the user runs:

$ curl -F -d myfield=foo http://kapow.example:8080/

then, when handling the request:

$ kapow get /request/form/myfield
foo

/request/files/<name>/filename Resource

Contains the name of the file uploaded through the incoming request.

Note: In the reference implementation to get access to the multipart data a correct Content-Type header must be
present in the request (multipart/form-data or multipart/mixed).

Sample Usage

If the user runs:

$ curl -F 'myfile=@filename.txt' http://kapow.example:8080/

then, when handling the request:

$ kapow get /request/files/myfile/filename
filename.txt

/request/files/<name>/content Resource

Contents of the file that is being uploaded in the incoming request.

Note: In the reference implementation to get access to the multipart data a correct Content-Type header must be
present in the request (multipart/form-data or multipart/mixed).

42 Chapter 4. Concepts

Kapow! Documentation, Release 0.7.1-27-g76af097

Sample Usage

If the user runs:

$ curl -F 'myfile=@filename.txt' http://kapow.example:8080/

then, when handling the request:

$ kapow get /request/files/myfile/content
...filename.txt contents...

/request/body Resource

Raw contents of the incoming request HTTP body.

Sample Usage

If the user runs:

$ curl --data-raw foobar http://kapow.example:8080/

then, when handling the request:

$ kapow get /request/body
foobar

/ssl/client/i/dn Resource

The IP address of the host making the incoming request.

Sample Usage

If the user runs:

$ curl --cacert path/to/CAfile --cert path/to/clientcredentials http://kapow.
→˓example:8080

using a client certificate with DN=subject@example.net then, when handling the request:

$ kapow get /ssl/client/i/dn
subject@example.net

/route/id Resource

The ID of the original route that matched this request..

4.4. The Kapow! Resource Tree 43

mailto:DN=subject@example.net

Kapow! Documentation, Release 0.7.1-27-g76af097

Sample Usage

If the user runs:

$ curl http://kapow.example:8080/

then, when handling the request:

$ kapow get /route/id
ecd5d63f-f28b-11ea-ac55-ec21e5089c1f

/server/log/<prefix>

Allows logging to Kapow!’s server stderr:

$ kapow set /server/log/my_banana_peeler 'banana too slippery!'

. . . meanwhile, in the server. . .

2020/12/18 11:15:49.437642 620846c6-4122-11eb-abeb-002b671b12f9 my_banana_peeler:
→˓banana too slippery!

Note that the ‘/my_banana_peeler’ part is an optional arbitrary prefix, and can be omitted.

/response/status Resource

Contains the status code given in the user response.

Note: In the reference implementation there are some caveats:

• The status code value must be between 100 and 999.

• There is no way of writing reason phrase in the status line of the response.

Sample Usage

If during the request handling:

$ kapow set /response/status 418

then the response will have the status code 418 I am a Teapot.

/response/headers/<name> Resource

Contains the value of the header name in the user response.

Note: At this moment header values are only appended, there is no way of reset the values once set.

44 Chapter 4. Concepts

Kapow! Documentation, Release 0.7.1-27-g76af097

Sample Usage

If during the request handling:

$ kapow set /response/headers/X-My-Header Foo

then the response will contain an HTTP header named X-My-Header with value Foo.

/response/cookies/<name> Resource

Contains the value of the cookie name that will be set to the user response.

Sample Usage

If during the request handling:

$ kapow set /response/cookies/MYCOOKIE Foo

then the response will set the cookie MYCOOKIE to the user in following requests.

/response/body Resource

Contains the value of the response HTTP body.

Sample Usage

If during the request handling:

$ kapow set /response/body foobar

then the response will contain foobar in the body.

4.5 Route Matching

Kapow! maintains a route table with a list of routes as provided by the user, and uses it to determine which handler an
incoming request should be dispatched to.

Each incoming request is matched against the routes in the route table in strict order. For each route in the route table,
the criteria are checked. If the request does not match, the next route in the route list is examined.

4.6 Routes

A Kapow! route specifies the matching criteria for an incoming request on the HTTP User Interface, and the details
to handle it.

Kapow! implements a route table where all routes reside.

A route can be set like this:

4.5. Route Matching 45

Kapow! Documentation, Release 0.7.1-27-g76af097

$ kapow route add \
-X POST \
'/register/{username}' \
-e '/bin/bash -c' \
-c 'touch /var/lib/mydb/"$(kapow get /request/matches/username)"' \
| jq

{
"id": "deadbeef-0d09-11ea-b18e-106530610c4d",
"method": "POST",
"url_pattern": "/register/{username}",
"entrypoint": "/bin/bash -c",
"command": "touch /var/lib/mydb/\"$(kapow get /request/matches/username)\""

}

Let’s use this example to discuss its elements.

4.6.1 Elements

id Route Element

Uniquely identifies each route. It is used for instance by kapow route remove <route_id>.

Note: The current implementation of Kapow! autogenerates a UUID for this field. In the future the user will be able
to specify a custom value.

method Route Element

Specifies the HTTP method for the route to match the incoming request.

Note that the route shown above will only match a POST request.

url_pattern Route Element

It matches the path component of the URL of the incoming request.

It can contain regex placeholders for easily capturing fragments of the path.

In the route shown above, a request with a URL /register/joe would match, assigning joe to the placeholder
username.

Kapow! leverages Gorilla Mux for managing routes. For the full story, see https://github.com/gorilla/mux

entrypoint Route Element

This sets the executable to be spawned, along with any arguments required.

In the route shown above, the entrypoint that will be run is /bin/bash -c, which is an incomplete recipe. It is then
completed by the command element.

Note: The semantics of this element closely match the Dockerfile’s ENTRYPOINT directive.

46 Chapter 4. Concepts

https://www.gorillatoolkit.org/pkg/mux
https://github.com/gorilla/mux
https://docs.docker.com/engine/reference/builder/#entrypoint

Kapow! Documentation, Release 0.7.1-27-g76af097

command Route Element

This is an optional last argument to be passed to the entrypoint.

In the route shown above, it completes the entrypoint to form the final incantation to be executed:

/bin/bash -c 'touch /var/lib/mydb/"$(kapow get /request/matches/username)"'

Note: The semantics of this element closely match the Dockerfile’s CMD directive.

4.6.2 Matching Algorithm

Kapow! leverages Gorilla Mux for this task. Check their documentation for the gory details.

4.6. Routes 47

https://docs.docker.com/engine/reference/builder/#cmd
https://www.gorillatoolkit.org/pkg/mux

Kapow! Documentation, Release 0.7.1-27-g76af097

48 Chapter 4. Concepts

Index

E
environment variable

KAPOW_CONTROL_URL, 37
KAPOW_DATA_URL, 37
KAPOW_HANDLER_ID, 37
PATH, 7

K
KAPOW_CONTROL_URL, 37
KAPOW_DATA_URL, 37
KAPOW_HANDLER_ID, 37

P
PATH, 7

49

	The Project
	Quick Start Guide
	Scenario
	Limitations and Constraints
	The Desired Solution
	Using Kapow!

	Security Concerns Working with Parameters
	Parameter Injection Attacks
	Parameter Mangling Attacks

	Installing Kapow!
	Download and Install a Binary
	Install the package with go get
	Include Kapow! in your Container Image

	Kapow! Tutorial
	Your First Day at Work
	Let’s Backup that Database!
	What have we done?
	We need to filter
	I Need my Report!
	Sharing the Stats
	Securing the server

	Examples
	Working with Init Scripts
	Starting Kapow! using an init script
	Writing Multiline Routes
	Keeping Things Tidy
	Debugging Init Programs/Scripts

	Managing Routes
	Adding New Routes
	Listing Routes
	Deleting Routes

	Handling HTTP Requests
	Add or Modify an HTTP Header
	Upload Files
	Sending HTTP error codes
	How to redirect using HTTP
	Manage Cookies

	Using JSON
	Modify JSON by Using Shell Commands

	Shell Tricks
	How to Execute Two Processes in Parallel
	Script debugging

	Using HTTPS and mTLS with Kapow!
	Using Kapow! built in capabilities
	Kapow! Behind a Reverse Proxy

	Concepts
	Kapow! HTTP Interfaces
	HTTP User Interface
	HTTPS Control Interface
	HTTP Data Interface

	Philosophy
	Single Static Binary
	Shell Agnostic
	Not a Silver Bullet
	Interoperability over Performance

	Request Life Cycle
	1. request
	2. spawn
	3. kapow set /response/body banana
	4. exit
	5. response

	The Kapow! Resource Tree
	Overview
	Resources

	Route Matching
	Routes
	Elements
	Matching Algorithm

	Index

